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RESEARCH MEMORANDUM 

A CORRELATION OF TWO-DIMENSIONAL  DATA ON LIFT COEFFICIENT 

AVAILABLE WITH BLOWING-, SUCTION-, SLOTTED-, 

AND PLAIN-FLAP  HIGH-LIFT  DEVICES 

By John M. Riebe 

A correlat ion has been made of the  avai lable  data on various  f lap- 
type  high-lif t   devices.  The data are presented  in  two-dimensional form 
for  f lap-chord  ratios  varying from  20 t o  40 percent.  Included i n   t h e  
correlat ion are da ta   for   p la in ,   s ing le   s lo t ted ,  and  double s lo t t ed   f l aps ,  
and for  suction and blowing f laps ,  which u t i l i zed  boundary-layer  control 
by suction and by j e t  flow,  respectively. The correlat ion is  not  intended 
for design  data  but  mainly t o  determine  the  relative  merits of the var i -  
ous systems i n  providing lift, to  provide  general   trends,  and t o  provide 
sources of available  data.  

Results of the  correlat ion from limited avai lable  data have indicated 
that f o r  a given  flap-chord  ratio,  the  largest  increments  of l i f t  coeff i -  
c i e n t   a t  zero  angle of a t tack  were obtained  for  the  blowing-flap  config- 
uration. Next, and i n  the  order of decreasing  abi l i ty   to   provide l i f t ,  
was the  suction  f lap,   the  double  slotted  f lap,   the  single  slotted  f lap,  
and the  plain  f lap.  The a b i l i t y  of  a  double s lo t t ed   f l ap   t o   p rov ide  l i f t  
was found t o  be c lose ly   re la ted   to   the   s ize  of t he  vane ahead of the   f lap .  
Good agreement was obtahed  between the  available  blowing-flap data from 
various  sources when the momentum coeff ic ient  is used as the  parameter 
for   correlat ion.  L i f t  coef f ic ien t   for   the  blowing f lap ,  when presented 
as a function of momentum coefficient  generally  extended  through two 
regions: a region of i n i t i a l   r ap id   i nc rease  i n  l i f t  c o e f f i c i e n t   t o  a 
value  equal   to   theoret ical  lift coef f ic ien t  of t he   p l a in   f l ap   ( co r re -  
sponding to   the   reg ion  of flow  attachment), and a . reg ion  of less rapid 
increase  (corresponding t o  a further  increase of circulation).   Flap- 
chord r a t i o  had a l a rge   e f f ec t  on the  momentum coef f ic ien t   requi red   to  
obtain a given l i f t  coeff ic ient   with m i n i m u m  momentum coeff ic ient   required 
in the  range of flap-chord  ratio greater than 0.30 and less than 0.40. 

Vertical   location  of  the blowing f l a p  nose  with  respect to   the   nozz le  
gap was found c r i t i c a l   i n   e s t a b l i s h i n g  a successful  blowing-flap  config- 
uration. Leading-edge devices  such as leading-edge  droop or a leading- 
edge slat are  necessary on t h i n  wings equipped  with  blowing f l a p s  if  the  
f u l l   l i f t - c o e f f i c i e n t   p o t e n t i a l i t i e s  are t o  be  realized. 
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INTRODLCTION . .  . .  
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The sustained  trend toward  higher wing loadings and more r e s t r i c t e d  
landing  and  take-off  at t i tudes  for high-speed airplanes  has  resulted i n  
the  continued need f o r  more powerful  aids i n   t h e   a l l e v i a t i o n  of t he  air- 
plane  landing and take-off problem. The pr inc ipa l  method of so lv ing   th i s  
problem up to  the  present  has  been  through  the use of  single and double 
s lo t t ed   f l aps  on  which a large  research  effor t   has  been expended  by the  
National  Advisory Committee for  Aeronautics and other  research  establish- 
ments (refs. 1 t o  17). The gains in l i f t   r e a l i z e d  from the   s ing le  and 
double   s lot ted  f lap have resulted  largely  through  increased wing chord 
and  from t h e   a b i l i t y  of these  f lap  configurat ions  to   extend  f lap  effec-  
t iveness  to  deflection  angles  considerably beyond that  obtained on p la in  . - 
f laps .  This extension of f lap-def lec t ion   angle   for   increased   l i f t  of 
s lo t t ed   f l aps  results from the  delay of separat ion  over   the  f laps  by 
means of boundary-layer  control  resulting from the  flow of air through 
s lots   actuated by the  pressure  difference between the  lower and upper 
surface of t he  wing. Methods of control l ing  the boundary layer  by exter- 
n a l  means, such as the  pumping of j e t s  of air over a  wing,  have a l so  been 
investigated and  have  been  proposed f o r  wings with  f laps  (as ear ly   as  1931, 
r e f .  18). The use  of  such j e t s  has  been  the  subject of a moderate amount 
of research  ( refs .  19 t o  26). Also considered and investigated  has been 
the removal  of  boundary layer  over  f laps by  means of suction. (See 
r e f s .  26 t o  29.) 

Although the use of suction and air j e t s   i n   t h e   r e g i o n  of t he   f l ap  
t o  provide  large l i f t  increments had been establ ished,   their   use  on air- 
planes had been practically  nonexistent,  because of the  complication of 
providing  or removing the  required air quant i t ies .  With the  advent of 
t h e   j e t  engine, which has a l a rge   po ten t i a l   fo r   s a t i s fy ing   t he  air require- 
ments, increased  interest  and research  has  centered on f l a p s   u t i l i z i n g  
t h i s   p o t e n t i a l  and designated as blowing and suct ion  f laps .  The present 
paper i s  a cor re la t ion  of the   ava i lab le  data of  the  various  flap-type 
high-l i f t   devices .  The cor re la t ion  i s  not  intended for  design  data  but 
mainly t o  determine  the  relative  merits of the  various systems i n  pro- 
viding l i f t ,  to   provide  general   t rends  for   fur ther   research,  and t o  pro- 
vide  sources of avai lable  data. Since most of the   ava i lab le   da ta   for  
correlat ion  presented  are  two dimensional,  the  correlation is  made in 
the  two-dimensional form. 

SYMBOLS 

increment of section l i f t  coeff ic ient  

ACZ increment o f .   s e c t i o n   l i f t   c o e f f i c i e n t  a t  Oo angle of a t tack  
(a=O ) 
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quantity  f low  coefficient  (posit ive  for blowing, negative 
Q Q' f o r  suct ion) ,  - or - 

VS Pi3:VS 

momentum coef f ic ien t   (pos i t ive   for  blowing,  negative f o r  
pjQVj 

ss 
suct ion) ,  - 

quantity of air, cu  f t /sec 

quantity of air ,  lb/sec 

free-stream  velocity,  ft/sec 

je t  velocity,   f t /sec 

wing area, sq f t  

free-stream dynamic pressure, lp?, lb/sq f t  2 

free-stream mass density, slUgS/CU f t  

j e t  mass density, slugS/CU f t  

gravitational  constant,  32.2 f t / sec  

wing chord, f t  

2 

nozzle gap, f t  

f lap  def lect ion  with  respect   to  wing chord l i ne ,  deg 

vane deflection  with  respect  to wing chord l i ne ,  deg 

flap-chord  ratio  (f ig.  1) 

angle of attack  of wing, deg 

r a t i o  of  vane  chord t o   f l a p  chord ( f ig .  1) 

plain-fiap  effectiveness  parameter . .  
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Most of the ava i lab le  data i n  the reference  reports   for   suct ion and 
blowing f l a p s  use the flow  coefficient CQ as the  parameter for   def in ing  
the   e f fec ts  of a i r  flow. Because of the  large  differences i n  nozzle gaps 
for  the  various  data,   the  use of the  f low  coefficient CQ was unsatis-  
fac tory  when cor re la t ion  w a s  attempted of the various  blowing-flap  data. 
A more suitable  parameter  for  correlation w a s  the momentum coeff ic ient  Cp. 

I n  the  present  paper and i n  other  unpublished  papers it was found that 
momentum coef f ic ien t  C,, was sa t i s f ac to ry   fo r   co r re l a t ion  of both  high- 
and low-pressure  bxowing-flap  systems. The da ta   fo r  the high-pressure 
systems, reference 23 and  unpublished data  from the Ames Aeronautical 
Laboratory, were obtained  direct ly  in the  form of momentum coeff ic ient .  
Generally the remainder  of  the  available  blowing-flap data was from low- 
pressure  systems  presented  in the form  of f low  coeff ic ients  CQ. These 
data  have been converted t o  momentum coef f ic ien ts  by the  following rela- 
t ionships  derived and  used in  references 26 and 30. 

Negative  values f o r  Cp represent  the  suction  conditions. The re la t ion-  
ships   are   bel ieved  sat isfactory  for  the low-pressure data because  nozzle 
coefficients  for  shapes similar t o  that used in  t h e   a i r f o i l s  approach 
unity. Any e r ro r s  that m i g h t  a r i s e  are believed t o  be small and w i l l  
have no appreciable   effect  on the  general   trend of the  data.  It i s  a l so  
real ized tha t  cor re la t ion  of data from many different  sources i s  generally 
subject   to  some inaccuracies; however, it is believed that the  general  
t rends  are   val id .  

Unpublished suction-flap and blowing-flap data obtained from tests 
a t  the Ames Aeronautical  Laboratory were not  obtained  directly a t  zero 
angle of attack  because  separation  existed on the wing leading edge  and 
the  tunnel walls fo r   t h i s   cond i t ion ,  and variations  occurred  in  the l i f t -  
curve  slope. The values  used i n  the present  paper were obtained by using 
the  difference between the  l i f t  coef f ic ien t   for   f lap   def lec ted  and  unde- 
f leeted  obtained  a t  -4' angle of a t tack (where separation was minimized). ' .  

These values  are  believed  representative of the l i f t  coeff ic ient  that 
would be  obtained a t  zero  angle of a t tack if separation on the wing l e a d i n g . , '  
edge and the tunnel walls was absent a t  this angle.  Blowing-flap data, as ,' 

for example reference 25, generally show about a cons tan t   l i f t -coef f ic ien t  
increment f o r  a given  flap  deflection  throughout the angle-of-attack  range 
similar t o  that usually found for   p la in  and s lot ted  f lap  without  blowing. 
The da ta   for   the   0 .28~  f lap ,   re fe rence  22, were obtained by extrapolation 
of data a t  moderate angles of a t t ack   t o  zero. 
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In  the  present  paper  the  flap-chord  value may be d i f fe ren t  from the .. 
value  given in  the  reference data. This  results from lack of uniformity 
in  defining  f lap  chord  in  the  available  reference data. In  order  to  unify 
the  definit ion of flap-chord  ratio,  in  the  present  paper,  flap  chords  for 
suction  or blowing flaps  are  generally  defined as the  distance from the 
nozzle l i p   t o   t h e  wing t r a i l i n g  edge,  and w i n g  chord i s  the summation of 
this length and the  distance from the wing leading edge t o   t h e   l i p   ( f i g .  1). 
In   o rder   to  remove the   e f fec t  of chord-extension  for  correlation  purposes, 
l i f t  coefficients,   f low  coefficients,  and momentum coeff ic ients   in   these 
instances have been  adjusted  for  the  increase  of wing area.   In   general ,  
these  corrections were small. The chord   for   s ing le   s lo t ted   f laps .has  been 
defined as the  distance from f lap  leading edge t o  wing t r a i l i n g  edge and 
the  chord  for  double  slotted  flaps as the  distance from the vane leading 
edge to   t he  wing t r a i l i n g  edge  (see f i g .  1). The chord-extension  effect 
has not been  eliminated from the single- and double-slotted-flap data. It 
i s  believed  that  for  the  zero-angle-of-attack  case  considered,  chord- 
extensions w i l l  have a r e l a t ive ly  small e f f ec t  on the  general comparison 
of the lift capabi l i t i es  of the  various  flap  arrangements  considered  in 
the  present  report .  

A comparison  of t he  l i f t  capabi l i t i es  of plain,   s ingle   s lot ted,  
double  slotted,  suction, and blowing f l aps  as obtained  from  the  reference 
reports  for  various  chords is presented  in   f igure 2. Data fo r   t he   0 .25~-  
plain-flap  configuration of f igure  2 (b) were obtained by interpolat ion 
of 0 . 2 0 ~ -  and 0.30~-plain-flap  data  of  reference 31. The 0.40~-plain- 
f lap  data   of  figure 2 (d) were obtained from reference 32. 

A comparison  of t he   e f f ec t  of j e t  and suction  systems on a wing 
with  f lap i s  presented i n  figure 3 .  The e f f ec t  of  vane s i ze  on the two- 
dimensional l i f t  capabili t ies  of  double  slotted  f laps of  approximately 
25 percent  chord is presented   in   f igure  4. I n   f i g u r e  5 is presented  the 
e f f e c t  of momentum coeff ic ient  Cp on the  l i f t -coeff ic ient   increment  
available a t  zero angle of a t t a c k   f o r  blowing f l aps  of various  chords a t  
several   f lap  def lect ions.   Figure 6 presents  the  effect  of j e t   r e a c t i o n  
in   t he   ve r t i ca l   d i r ec t ion  on the   var ia t ion  of l i f t  coeff ic ient   with 
momentum coeff ic ient .  The e f fec t   o f  momentum coeff ic ient  on the  var i -  
a t ion  of l if t-coefficient  increment  of a p l a in  w i n g  a t  several   angles 
of a t tack  i s  presented i n   f i g u r e  7. The minimum momentum coef f ic ien t  
required  to   obtain a given l i f t  coefficient  for  blowing-flap  configu- 
ra t ions  of  various  chords i s  given in   f i gu re  8. The e f f e c t  of j e t  loca- 
t i o n  on the  l i f t  increment  available  for a blowing f l a p  is  shown i n   f i g -  
ure 9. The effect of  wing thickness  and  the use of a leading-edge slat  
to  delay  leading-edge  separation is  shown i n  figure 10. The effect of 
j e t  slot   width  throughout  the Cp range i s  a l so  shown i n   f i g u r e  10. 
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Comparison of Various  Flap  Configurations 

The comparison  of the l i f t  capabi l i t ies  of the  various types of f l a p  
a t  angles of a t tack equal t o  zero is  given  for   f laps  of several   chord  ratios 
in   f igure   2 .  The slotted-flap  configurations were capable  of  extending  the 
nearly  l inear  variation of l i f t  coeff ic ient  w i t h  def lect ion  to   higher  
values.  For  example, among the  f laps  with  cf/c of  0.25 ( f i g .   2 ( b ) ) ,  the 
p la in   f lap  had a nearly  l inear  range  to lo", the  single s lo t t ed   f l ap  
increased  the  nearly  linear  range  to  about 3 5 O ,  and the additi.on of a s u i t -  
able vane ahead  of t he   f l ap  (double s l o t t e d   f l a p )  extendedothe  deflection 
for   near ly   l inear   var ia t ion  of LC1 with €if t o  about 60 . Although the 
slotted  f laps  extend  the  range of 6f,  the  lift-coefficient  increments 
obtained f e l l  below the  theoret ical   values   for  a p l a in   f l ap  1 

In  order  to  obtain  or  exceed  the  theoretical   values,  some type of forced 
boundary-layer  control i s  required. From the  data  available,  it should 
be possible  to  obtain l i f t  coeff ic ients  up to  theoretical   values by the 
use of suction  through a s l o t  (refs. 26 t o  28)  or by area suction (ref.  29).  
Values greater  than  theoretical  up t o  a t  least 6f = 600 ( f igs .   2 (a)  and 
2 (d ) )  can be obtained by applying  boundary-layer  control i n   t h e  form o f , a  
high-speed j e t  blowing  over the  def lected  f lap.  

The discussion i n   t h i s   r e p o r t ,   i n   g e n e r a l ,  w i l l  be concerned  with  the 
e f fec ts  of the  variables on the  lift-coefficient  increment a t  zero angle 
of a t tack.  It is  rea l ized   tha t   the   f ina l   se lec t ion  of a f l ap  would of 
necessity  consider  weight,  mechanical  complexity,  lift-drag  ratio  for  both 
take-off  and  landing,  and so for th .  The var iables ,   in   general ,   are  a 
function of wing plan form  and airplane  configuration. If a given l i f t -  
coefficient  increment i s  required that i s  below theoretical,  considerable 
choice i n  device i s  available,  and i f  the  value is near   theoret ical ,   e i ther  
a suction  or blowing f lap  can be  used. However, i f  the l i f t  coeff ic ient  
required is above theoret ical ,   then (from the data available)  recourse 
must be made to   t he  blowing  type  of  flap. These concepts  are  also  indi- 
cated by the data of f igure  3. However, it should  be  noted that the 
various  configurations shown i n   f i g u r e  3 are  not  necessarily optimum. For 
example, it i s  expected  that  the  use of area  suction would r e s u l t   i n  a 
much  more rapid  increase  toward  theoretical l i f t  coeff ic ient   than  that  
shown far  suction  through a s l o t .  
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Slotted  Flaps 

The a b i l i t y  of the   s lo t ted   f lap   to   increase   the   ava i lab le  l i f t  coef- 
f i c i e n t  over  the  plain  flap i s  the  resul t  of both  the  extension of the 
wing area and  the  induced  boundary-layer  control  over  the  flap  caused by 
flow  through  the s lo t s   a t   the   f lap   l ead ing  edge. The data shown for   the 
s lo t t ed   f l aps  have  been obtained from investigations where, in   general ,  
the  objective w a s  high maximum l i f t  coefficient and therefore  the l i f t  
increment a t  zero  angle of a t tack may not be the optimum.  However, the 
data  are  believed  to be representative of the  range of l i f t - coe f f i c i en t  
increment that can be obtained. 

The a b i l i t y  of a double s lo t t ed   f l ap   t o   p rov ide  l i f t  is a function 
of t he   s i ze  of t he  vane ahead of the  flap.  Increasing  the  vane-flap 
r a t i o   ( f i g .  4) from 0 t o  0.46 increased  the  largest  obtainable  increment 
i n   l i f t   c o e f f i c i e n t  a t  zero  angle of a t tack  AC- from 1.65 t o  about 

(-0, 
2.8. Part  of th i s   increase   can   be   a t t r ibu ted   to  an effect ive  increase 
i n   f l a p  chord; however, most  of the  increase  resulted from the  increased 
flap  angle (30' fo r   c f l / c  = 0 t o  70' fo r  cf '/c = 0.46). The deflection 
of t he  vane also increases as cv/cf'   increases  for maximum effect ive-  

ness.  Similar  trends were obtained in the  three-dimensional  data  of 
reference 1.7. Since  there are several  papers (refs. 15 and 16, f o r  exam- 
ple)   deal ing  with  s lot ted  f laps  as high-lif t   devices,  no further  discus- 
sion of the   e f fec ts  of f l a p  chord, vane chord, o r  t h e i r  arrangement w i l l  
be made. It i s  f e l t  that the  trends of figure 4 w i l l  hold  for  other 
flap-chord  ratios and indicate  that ,   al though  the  f lap  deflection and lift 
increment  can  be  increased by increases  in  cV/cf ' ,   the  value of AC, 

(a=O ) 
w i l l  s t i l l  f a l l   s h o r t  of the  theoretical   value  for a p la in   f lap .  

Soundary-Layer Flap  Suction 

The discussion of suct ion  f laps  m u s t  be  more br ief   than  that  of 
e i the r   s lo t t ed   f l aps  or blowing flaps  since  there  are so few systematic 
data avai lable   ( refs .  26 to   29)  . The r e su l t s   ( f i g s .  2 and 3 ,  and r e f .  29) 
do indicate,  however, that   wi th  an e f f ic ien t   suc t ion   f lap ,  l i f t  increments 
approaching  or  equaling  the  theoretical  value  can be  0-btained. As men- 
tioned  previously,  the  configurations shown i n   f i g u r e  3 are not  necessarily 
optimum configurations,   especially  for  the  suction  f lap.  The r e su l t s  of 
reference 29 indicate   that  one of the more e f f i c i en t  arrangements would 
use a porous  surface (area suction)  rather  than a s l o t   t o  remove the 
boundary layer and prevent  separation  over  the  flap. 

. .  



8 - NACA RM L55D29a 

Boundary-Layer Flap Blowing 

A consis tent   var ia t ion of LC is  shown with  both momentum 
2 (a=o) 

coeff ic ient  Cp and  f lap-chord  ratio  cf/c  (f ig.  5 )  when the  data  are 
compared a t  constant  f lap  angle.  These trends  are  apparent  despite 
re la t ively  large  var ia t ions  exis t ing  in   thickness ,   pressure  ra t io ,  and 
gap s i ze .  It w i l l  be shown that  these  are  secondary  effects when the 
data  are compared using momentum coefficient  and when the wing is  equipped 
with  leading-edge  devices. 

Throughout the  f lap-chord  ratio and f lap-def lec t ion  range,. an increase 
i n  l i f t  coefficient  occurred  with  an  increase  in momentum coeff ic ient .  
The l i f t -coef f ic ien t   increase  was most rapid up to   the   theore t ica l   va lue  
fo r   p l a in   f l aps  on t h i n  wings. This  region is  believed  to  correspond  to 
the  condition'where  the  primary  effect of the  blowing air i s  t o . b r i n g  
about  reattacbment  of  the  separated  flow. Beyond th is   reg ion  of reattach- 
ment of f low,  the  rate of increase of AC2 with C was lower. The 

decreased  rate of  change  of AC, with C,, corresponded  approximately 

to   the   ra te   ob ta ined  on a p la in  wing a t  zero  angle of a t tack   a l te red  by 
consideration of the  ver t ical  change i n  momentum ( f i g .  6 )  resul t ing from 
downward deflection of the  jet   stream by the   f lap  (Coanda e f f ec t ;   r e f s .  33 
and 34). Similar  regions of flows were noted in   the   ana lys i s  of 
reference 30. 

(a=O ) CL 

(a=O ) 

A s  shown by the  data   correlated  in   f igure 5, the  increase  of l i f t  
coefficient  with momentum coeff ic ient  was generally more r a p i d   a t   t h e  
larger   f lap-chord  ra t ios  
reduct ion   in   the   ra te  of 
f i c   i e n t  . 

Although the amount 
large  values of fjf, the  
deflection  range. For a 

up t o   0 . 3 2 ~ ;  above t h i s  a t  0.43c, there  was a 
increase of l i f t  coeff ic ient   with momentum coef- 

of data  available i s  small, par t i cu la r ly   fo r   t he  
trends are generally similar throughout  the  flap- 
given  flap-chord  ratio  the  value of C,, required 

to   ob ta in   the   theore t ica l  ACZ increased as increased. For 

example, f o r   t h e o r e t i c a l  aCz w a s  0.052, 0.126, and 0.161 f o r  

Ef of 20°, 4 5 O ,  and 53O of  a 0 .25~  f lap.   This   increase  with Ef i s  t o  
be  expected  considering  the  larger  effort   required  to  reattach  the  f low 
over  the  f lap as Ef increases. 

( "0  1 
(-0 

An analogous situation  occurred  with  the  use of  a jet  of a i r  over a 
plain wing (Ef = 0, f i g .  7 . As angle of attack  increased,  the momentum 
coeff ic ient   required  to   obtain  theoret ical  l i f t  coef f ic ien t  a l s o  increased. 

) 
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For a given momentum coe f f i c i en t ,   l a rge r   l i f t   coe f f i c i en t s  were obtained 
as  the  angle of attack  increased up t o  l5O (near   the   s ta l l   angle   for   the  
plain  wing). For angles of a t tack  of 20' and higher, less increase of 
lift coef f ic ien t   for   the   p la in  wing was obtained  with  increased momentum 
coeff ic ient .  A t  25O angle of attack,  the  increase of l i f t  with momentum 
coeff ic ient  w a s  less  than  that   obtained  at   zero  angle of a t t ack   fo r   t he  
momentum-coefficient  range  investigated. 

The desirable arrangement of  any high-lif t   device i s  the one t h a t  
gives  the most l i f t  wi th   the  least   penal ty .   In   the  case of s lo t t ed   f l aps ,  
t h i s  arrangement i s  the   l i gh te s t  and simplest   configuration  that  w i l l  
give  the  desired l i f t  and drag.  In  the  case of the  blowing f l a p  it is  
the one tha t   requi res   the   l eas t  power or  i n  most cases of cu r ren t   i n t e re s t  
the  arrangement that   requires  minimum (because of ninimum engine a i r  

bleed  requirement). As  discussed  previously,  the most suitable  parameter 
for   cor re la t ion  of the  avai lable   data  was the  momentum coefficient.   Since 
the  momentum coeff ic ient  i s  an  indication of the  power required o r  for 
fixed  nozzle gap size  the  flow  coefficient  required,  the  data of f igure  5 
have been  cross-plotted  in  f igure 8 t o  show the  value of CV requi red   to  
obtain a given lift coeff ic ient   as  a function of cf/c.  The da ta   fo r  
cf/c = 0 were obtained by extrapolating  the  plain-wing  data  (f ig.  7) con- 
siderably beyond the  range of the  investigation. Some extrapolation was 
necessary  for  the  other  data  but of considerably smaller magnitude  than 
for  the  plain-wing  data. 

cQ 

The var ia t ion of cf/c  with CV indicates  that a given l i f t  coef- 
f i c i e n t  can  be  obtained  with  the  least CV for   f lap-chord  ra t ios  of the 
order of  0.35. 

Effect of Blowing-Flap Position 

In  addi t ion  to   the  effects  of f lap-chord  ratio and f lap  def lect ion,  
the  posit ion of the  f lap nose r e l a t i v e   t o   t h e   j e t  i s  of  major  importance. 
Examination  of the  data of reference 26 and f igure 9 ( ref .   23)   indicates  
that   the   ver t ical   locat ion of the   f lap   wi th   respec t   to   the   j e t  axis is  
an  important  cri terion  in  establishing a successful blowing f l ap .  It 
appears   that   the   je t  must impinge upon the   f lap   ( f ig .  9) or  be e jec ted  
along i ts  su r face   ( f ig .   2 (c ) )   i f   t he   r ap id   i nc rease   i n  with 

CV i s  t o  be obtained. There appears t o  be some tolerance  allowed i n  
the  longitudinal  posit ion of the   j e t   wi th   respec t   to   the   f lap  nose 
( f i g .  9). This. i s  a l so   i nd ica t ed   i n  a comparison  of  Ames.unpublished 
data and the data of reference 23 i n   f i gu re   2 (c )  and a l so   i n   f i gu res   5 (b )  
and 5 (d ) ,  where the data for   both  f lap  configurat ions  correlate   c losely 
when consideration is  made of flap-chord  effects.   In  the Ames investiga- 
t i o n   t h e   a i r  was ejected  near  the  f lap peak pressure and i n   t h e  . 

ac,(a=o) 

3 - 
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investigation  of  reference 23 the a i r  w a s  ejected  ahead of the   f lap  
nose. It appears,   therefore,   that  i f  the j e t  of a i r  i s  loca ted   in  a 
sa t i s f ac to ry   pos i t i on   r e l a t ive   t o   t he   f l ap ,   t he re  i s  g e n e r a l l y   l i t t l e  
difference between a p l a in  and s lo t t ed   f l ap  as far  as l i f t  effect ive-  
ness i s  concerned. 

Effect  of Wing Thickness 

Although there are not   suf f ic ien t   da ta   to   es tab l i sh  any var ia t ion 
of nc wi th   t / c   fo r  blowing f laps ,   the  data do indicate that 

the  value of ACz w a s  l a rge r   fo r   t h i cke r   a i r fo i l   s ec t ions   ( f ig .  10) .  

The data (Cp = 0.16) indicate   that   the   large loss associated  with 
th inne r   a i r fo i l s  i s  a l lev ia ted  somewhat by  the  addition of a leading- 
edge device. It would appear,  therefore,  that i f  f u l l  l i f t  po ten t ia l i -  
t ies of the  thinner  sections are t o  be realized, some s o r t  of leading- 
edge device to  prevent  leading-edge  separation w i l l  be necessary. 

(a=O ) 

(u=o 1 

Effect  of S lo t  Width 

Using the momentum coeff ic ient  as a basis for   correlat ion,   the  
negl ig ib le   e f fec t  of s l o t  width on the  obtainable l i f t  coef f ic ien t   for  
a low-pressure  system is  shown  by the data of reference 21 ( f i g .  11). 
Although these data f o r  conversion t o  momentum coeff ic ient  were obtained 
a t  10' angle of a t tack ,   the   resu l t s   a re   typ ica l  of other  unpublished 
data a t  zero  angle of a t tack.  

General Remarks 

A correlation  has  been made of the limited two-dimensional data 
available on blowing-,  suction-,  slotted-, and plain-f lap  high-l i f t  
devices. The correlation  has  been  restricted  mainly  to  the  available 
l i f t   c o e f f i c i e n t  a t  zero  angle of attack.  Selection of a suitable  high- 
l i f t  device  for  achieving similar increases   in   the  ...& hum l i f t  coeffi-  
cient  for  an  airplane  configuration would also have t o  consider  other 
factors  which are  beyond the  scope of the  present  paper,  such as longi- 
tudinal t r i m  requirements,  lift-drag  ratios,  angle-of  -attack  effects' ,  
power requirements f o r  a i r  supply,  and  structural  complications. 
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CONCLUSIONS 

A correlat ion of the  avai lable  two-dimensional data of various  f lap- 
type  high-lift  devices  has  indicated  the  following  general  conclusions: 

1. For a given  flap-chord  ratio,  the  largest  increments of l i f t  
coeff ic ient   a t   zero  angle  of a t tack  were obtained  for  the blowing f l aps .  
Next and in   the  order  of dec reas ing   ab i l i t y   t o   p rov ide   l i f t   coe f f i c i en t  
were the  suction  f lap,   the double s lo t t ed   f l ap ,   t he   s lo t t ed   f l ap ,  and  the 
plain  f lap.  

2. The a b i l i t y  of a double   s lo t ted   f lap   to   p rovide   l i f t  was found 
t o  be c lose ly   re la ted   to   the   s ize  of the vane  ahead  of the   f lap .  For 
example, progressively  increasing  the  vane-flap  ratio from 0 t o  about 0.46 
f o r  a 0.25-chord flap  increased  the  obtainable  increment of l i f t  coef f i -  
c ient   a t   zero  angle  of a t tack  from 1.6 t o  about  2.8  almost l i nea r ly .  

3 .  Good agreement was obtained between the  available  blowing-flap 
data when  momentum coeff ic ient  w a s  used as the  parameter  for  correlation. 

4. Lif t   coef f ic ien t  for the  blowing f lap,  when presented as a func- 
t ion  of momentum coefficient,  generally  extended  through two regions: 
an in i t i a l   r ap id   i nc rease   t o   p l a in - f l ap   t heo re t i ca l  lift coef f ic ien t  
(corresponding to   the  region of flow attachment) and then a less   rap id  
increase  (corresponding  to a further  increase of c i rcu la t ion) .  

5 .  Flap-chord r a t i o  had a la rge   e f fec t  on the  momentum coef f ic ien t  
required  to  obtain a given l i f t   c o e f f i c i e n t ,   w i t h  minimum  momentum coef- 
f ic ien t   requi red   in  a flap-chord-ratio  range  greater  than 0.30 and l e s s  
than 0.40. 

6. Vert ical   locat ion of t he   f l ap  nose  with  respect  to  the  nozzle 
axis  i s  c r i t i c a l   i n   e s t a b l i s h i n g  a successful  blowing-flap  configuration. 

7. Leading-edge devices  such as leading-edge  droop  or a leading-edge 
s lot   are   necessary on th in  wings  equipped with  blowing  flaps i f  t h e   f u l l  
l i f t   p o t e n t i a l i t i e s   a r e   t o  be  realized. 

Langley  Aeronautical  Laboratory, 
National  Advisory Committee for  Aeronautics, 

l jngley  Field,  Va., April  15, 1955. 



12 

REFERENCES 

NACA RM ~ 5 5 ~ 2 %  

1. Wenzinger, Carl J., and Gauvin, William E. : Wind-Tunnel Investigation 
of an NACA 23012 Ai r fo i l  With a Slotted  Flap and Three "pes of 
A u x i l i a r y  Flap. NACA Xep. 679, 1939. 

2. Purser, Pau l  E., Fischel,  Jack, and Riebe, John M. : W i n d - m e l  
Investigation  of  an NACA 23012 Air fo i l  With a 0.30-Airfoil-Chord 
Double Slotted  Flap. NACA WR L-469, 1943. (Formerly NACA ARR 3LlO.) 

3. H a r r i s ,  Thomas A., and  Recant, Isidore G. : Wind-Tunnel Investigation 
of NACA 23012, 23021, and 23030 Airfoi ls  Equipped With 40-Percent- 
Chord Double Slotted  Flaps. NACA Rep.  723, 1941. 

4. Cahill,  Jones  F.: Aerodynamic Data for a Wing Section of the  Republic 
XF-12 Airplane Eqyipped With a Double Slotted  Flap. NACA WR L-744, 
1946. (Formerly NACA MR L6AO8a. ) 

5 .  Cahill,  Jones F.,  and Racisz,  Stanley F. : Wind-Tunnel Investigation 
of Seven Thin NACA Airfoil  Sections To Determine Optimum Double- 
Slotted-Flap  Configurations. NACA TN 1343, 1948. 

6. McKee, Paul B.: Preliminary  Report of an  Investigation on the Maxi- 
' mum L i f t  Coefficient of a 4.3 Percent  Thick  Supersonic  Airfoil 

Equipped  With High L i f t  Devices. Part  I1 - Various Double Slotted 
Trail ing Edge Flaps Combined With Plain and Slot ted Leading Edge 
Flaps. MR NO. MCREXA9-4482-5-27, A i r  Materiel Command, U. S. A i r  
Force, Nov. 2, 1950. 

7. Hunton,  Lynn W., and James, Harry A.: Use of Two-Dimensional Data i n  
Estimating Loads on a 45O Sweptback Wing With Slats and Partial-Span 
Flaps. NACA TN 3040, 1953. 

8. Q u i n n ,  John H., Jr . : Tests of the NACA 641A212 Airfoil  Section With 

a Slat ,  a Double Slotted  Flap, and Boundary-Layer Control by Suction. 
NACA TN 1293, 1947. 

9. Kelly,  John A., and Hayter, Nora-Lee F.: L i f t  and Pitching Moment a t  
Low Speeds  of the NACA &A010 Airfoil   Section Equipped With Various 
Combinations  of a Leading-Edge Sla t ,  Leading-Edge Flap, Sp l i t  Flap, 
and Double-Slotted  Flap. NACA TN 3007, 1953. 

10. Horton, Elmer A., Racisz,  Stanley F., and Paradiso,  Nicholas J. : 
Investigation of Boundary-Layer Control t o  Improve the  L i f t  and Drag 
Characteristics  of  the NACA 652-413 Airfoil   Section With Double 
Slotted and Plain  Flaps. NACA TN 2149, 1950. 



NACA RM L55D29a L 13 

11. Nuber,  Robert  J.,  and  Rice,  Fred J., Jr.:  Lift  Tests  of a 0.1536~ 
Thick  Douglas  Airfoil  Section  of NACA 7-Series  Type  Equipped  With 
a Lateral-Control  Device  for  Use  With a Full-Span  Double-Slotted 
Flap  on  the  C-74  Airplane.  NACA WR L-641, 1945. (Formerly  NACA 
MR L5~24a .) 

12. Bogdonoff,  Seymour M.: Wind-Tunnel  Investigation  of a Low-Drag 
Airfoil  Section  With a Double  Slotted  Flap.  NACA WR L-697, 1943. 
(Formerly  NACA ACR 3120. ) 

13. Wenzinger,  Carl  J.,  and  Harris,  Thomas A.: Wind-Tunnel  Investiga- 
tion  of an N.A.C.A. 23012 ‘Airfoil  With  Various  Arrangements  of 
Slotted  Flaps.  NACA  Rep. 664, 1939. 

14. Harris,  Thomas A.: Wind-Tunnel  Investigation  of  an  N.A.C.A. 23012 
Airfoil  With Two Arrangements  of a Wide-Chord  Slotted  Flap.  NACA 
TN 715, 1939 - 

15. Cahill,  Jones F.: Summary  of  Section  Data  on  Trailing-Edge  High- 
Lift  Devices.  NACA  Rep. 938, 1949. (Supersedes  NACA RM ~8~09. ) 

16. Young, A. D.: The  Aerodynamic  Characteristics  of  Flaps. R. & M. 
No. 2622, British  A.R.C.,  Feb. 1947. 

17. Croom,  Delwin R. : A Low-Speed  Investigation  of a Thin 60’ Delta 
Wing  Equipped  With a Double  Slotted  Flap To Determine  the  Chord- 
wise  Pressure  Distribution  and  the  Effect  of Vane Size.  NACA 
RM L$L03a, 1955. 

18. Bamber,  Millard  J.:  Wind-Tunnel  Tests  on  Airfoil  Boundary  Layer 
Control  Using a Backward-Opening  Slot.  NACA  Rep. 385, 1931. 

19. Schwier, W.: Versuche zur Auftriebssteigerung  durch  Ausblasen 
von  Luft an einem  symmetrischen  Profil  mit  Wb’lbungsklappe  grosser 
Tiefe.  Bericht 41/14/27 (FB 1462), Aerodynamische  Versuchsanstalt 
Gijttingen,  Aug. 28, 1941. 

20. Ehlers  and  Schwier, W. : Blasversuche an einem  FlGgel  mit  Spaltklappe. 
Bericht 40/14/44 (Fl3 l274), Aerodynamische  Versuchsanstalt 
Giittingen,  Aug. 20, 1940. 

21. Nunemaker,  John  J.,  and  Fisher,  Jack W.: Two-Dimensional  Wind 
Tunnel  Investigation of Boundary  Layer  Control by Blowing  on  an 
NACA 23015 Airfoil.  Eng.  Rep. No. 023 (Contract N80~~-75600), 
Municipal  Univ.  of  Wichita,  Apr. 1950. 



14 NACA RM ~ 5 5 ~ 2 %  

22. Wallace, Richard E., and Stal ter ,  J. L.: Systematic, Two-Dimensional 
Tests of an NACA 23015 Airfoil  Section With a Single-Slotted  Flap 
and Circulation  Control. Aero. Rep . No. 120. (Contract N-ONR 

' 201(01) ), Municipal Univ. of Wichita, Aug. 194. 

23.  Harkleroad, E. L., and Murphy, R. D . : Two-Dimensional  Wind-Tunnel 
Tests of a Model of an F9F-5 Airplane Wing Section Using a High- 
Speed Jet Blowing Over the Flap. Pt. I - Tests of a 6 - ~ o o t  Chord 
Model. Aero. Rep. 845, David W. Taylor Model Basin, N a v y  Dept., 

1953. 

24. Schwier, W.: L i f t  Increase Produced By Blowing a Wing of a F'rofile 
Thickness of 9% Equipped With a S la t  and a Slotted Flap. Trans- 
l a t ion  No.  F-TS-645-RE. A i r  Materiel Command, U. S. Army A i r  Forces, 
Sept. 1 9 6 .  

25. Schwier, W.: L i f t  Increase By Blowing Out A i r ,  Tests on Air fo i l  of 
I 2  Percent  Thickness, Using Various Types of  Flap. NACA TM 1148, 
1947 

26. Lyon, H. M., Barnes, E. G., and Adamson, J. E.: Further Experiments 
on  Boundary Layer Control as a Means of Increasing  Lift.  Rep. 
NO. B.A. 1669, Br i t i sh  R.A.E., Apr. 1941. 

27. Regenscheit, B.: Suction  Flap Wing No. 23012 Interim Report  on a 
Systematic  Thickness  Series.  British  Ministry of Supply, TF'A.3/TIB 
Translation No. GDC 10/1302 T, Jan. 25, 1942. 

28. Regenscheit, B.: Suction  Flap Wing 23015 - P a r t i a l  Report  of a Series 
With Various  Thicknesses. Reps. and Translations No. 476, Bri t ish 
M. 0. S. (A) Vijlkenrode, Feb . 1947. 

29. Cook,  Woodrow L., Holzhauser, C u r t  A., and Kelly, Mark W.: The  Use of 
Area Suction  for  the Purpose of Improving Trailing-Edge  Flap  Effec- 
tiveness on a 33' Sweptback Wing. NACA RM A53EO6, 1953. 

30. Poisson-Quinton, Ph.: Recherches theoriques e t  experimentales sur l e  
controle  de la  couche l imite.  ONERA, Aug. 1948. (Presented a t  
V I 1  Congres Internat ional  de Mecanique Appliquee (London), Sept. 5, 
1948 1 

31. Sears,  Richard I.: Wind-Tunnel Data on the Aerodynamic Characterist ics 
of Airplane  Control  Surfaces. NACA WR L-663, 193. (Formerly NACA 
ACR L3L.08. ) 

32.  Riebe, John M., and Church, Oleta: Wind-Tunnel Investigation  of 
Control-Surface  Characteristics. XXI - Medium and Large Aerodynamic 
Balances  of Two Nose Shapes and a Plain Overhang Used With a 0.40- 
Airfoil-Chord  Flap on an NACA OW9 Airfoi l .  NACA WR L-175, 1945. 
(Formerly NACA ARR L5COl.) 



NACA RM L55D29a 15 

I 

j 

i 

3 3 .  Metral, A. R.: Method of Increasing  Fluid Stream by Diverting It From 
I t s  Axis of Flow. Coanda Effect.  !Translation Rep. No. 3"TS-823-RE, 
A i r  Materiel Cormnand, U. S. A i r  Force, Feb. 1948. 

I 
I 
i 34: Squire, H. B., Harper, D. J., Bekassy, J., and Chester, W. (B. Sc.): 

r, Wind Tunnel Test of Oblique Jet Units. Rep. No. Aero. 2007, Brit ish 
R.A.E., Jan. 195, Appendix. 

I 

! 



16 

Figure 1.- Definition of f l a p  chord. - 
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(a) cf/c = 0.20. 

Figure 2.- General  comparison of l if t-coefficient  increment  available from 
blowing, suction,  slotted,  and p la in   f laps  of various  chords i n  two- 
dimensional  flow. 
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(b) cf/c = 0.25. 

Figure 2. - Continued. 
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Section Flap S/C cp.. Reference 

64A010 Blowing -32 Ames(unplb/ish&’ a 
6 4 A 0 1 0  Suction 30 
6 5 , 3 - 1 1 8 ~ = / ~  Double slotted .309 1 2  Q 

14.5% Blowing .0067 .27 1 8  Q 

4.8 64AOlO  Blowing ,00072 “28 23 0 

4.4 
0015 Plain 30 31 0 

8f t dw 

( c )  c f / C  X 0.30- 

Figure 2.- Continued. 
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8f I deg 

(d )  C ~ / C  x 0.40. 

Figure 2. - Concluded. 



! Figure 3 .  - Comparison of lift-coefficient  increment  available at various 
momentum coeff ic ients   for   suct ion and blowing f l aps  w i t h  single and 
double s lo t t ed   f l aps .  cf = 0.40~. 
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Figure 4.- Effect of vane s i ze  on the  two-dimensional l i f t  capabi l i t ies  
of a double s ' lo t ted  f lap (rear f l a p  chord  constant 0.232). 
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I .  (a) 6f = 0' and 20'. 

Figure 5 .- Effect of momentum coef f ic ien ts   for  blowing flaps of 
various chords. 
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Figure 3. - Continued. 
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Figure 5.- Concluded. 
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Figure 6.- Variation of  Acz with Cp fo r  a plain wing ( je t  at 0 .539~)  
with consideration of the  effect  of Je t   reac t ioq   in   the   ver t ica l  
direction  resulting from downward deflection of the je t  stream 
through  various  angles. 
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Figure 7.- Effect of angle of a t tack  on the   var ia t ion  of l i f t   c o e f f i c i e n t  
with momentum coe f f i c i en t   fo r  a wing with 6f = 0. Slot at 0.53% 
( re f .  18). 
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Figure 8.- Minimum momentum coefficient  required t o  obtain a given l i f t  
coefficient f o r  blowing-flap  configurations as determined from figure 5 0  
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Figure 9. - Effect of jet  locat  ion 6f = 43’ (ref. 23) . 
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Figure 10.- Effect of wing thickness and leading-edge slat on the lift 
increment available for blowing flaps of approximately 0.25~. Cp = 0.16. 
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Figure 11.- Effect of slot width on a blowing f l ap  of approximately 0 . 2 5 ~ .  
6f = 500; a = 100 (ref. 21). 


